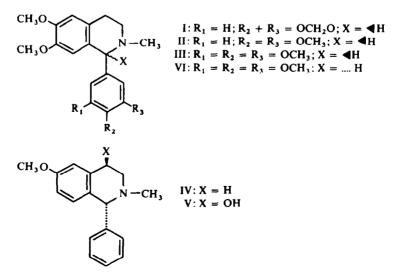
THE ABSOLUTE CONFIGURATION OF CRYPTOSTYLINE—III

STUDIES ON THE SYNTHESES OF HETEROCYCLIC COMPOUNDS-CCCXCVII

T. KAMETANI, H. SUGI and S. SHIBUYA


Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

(Received in Japan 1 December 1970; Received in the UK for publication 18 December 1970)

Abstract—Optical resolution of (\pm) -1,2,3,4-tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)isoquinoline (XII) with di-*p*-toluoyl-(+)-tartaric acid gave (-)-isoquinoline (XIII) and (+)-isomer (XIV). The former was transformed to (+)-cryptostyline III (III). A method for the stereochemical study of cryptostyline III by correlation of ORD and CD spectra with those of 1-(*R*)-phenylisoquinoline analogue (IV) is described.

CRYPTOSTYLINE I, II, III are the first 1-phenylisoquinoline alkaloids isolated from *Cryptostylis fulva Schltr.* by Leander.^{2, 3} The structure of these three alkaloids was confirmed by their spectroscopic data and total syntheses, ^{2, 3} leaving the absolute configuration of the C-1 position unsolved. We have previously reported on the stereochemistry of (+)-1,2,3,4-tetrahydro-6-methoxy-2-methyl-1-phenylisoquinoline (IV) derived from 4-hydroxyl-1-phenylisoquinoline (V).⁴ We are currently investigating the determination of the absolute configuration of these 1-phenylisoquinoline alkaloids by correlation of ORD and CD spectra with those of IV as an extension of the previous work.⁴ We herein wish to report these results.

SCHEME I

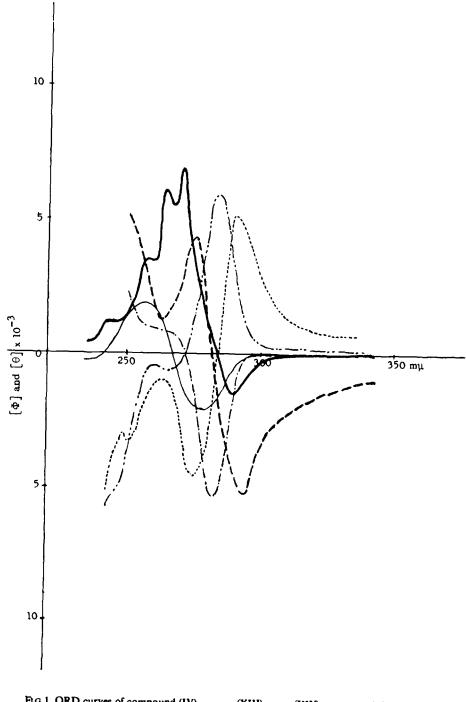


Fig 1. ORD curves of compound (IV) _____ (XIII) ____ (XIV) ____ and CD curves of compound (IV) _____ (XIII) ____ (XIV) ____ (in MeOH)

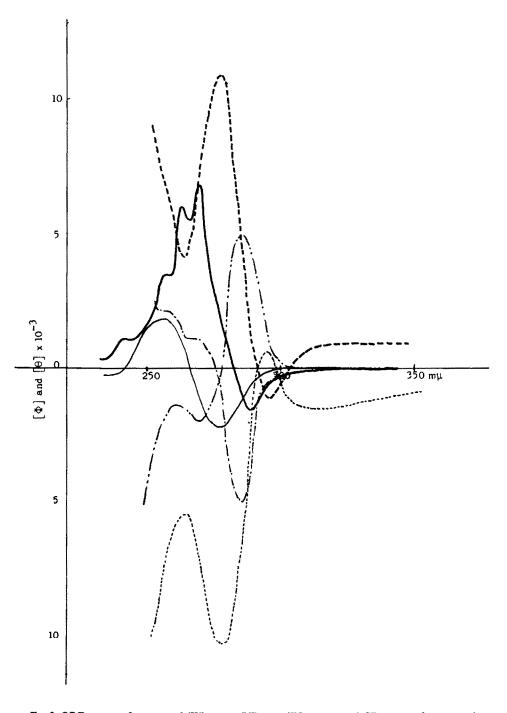
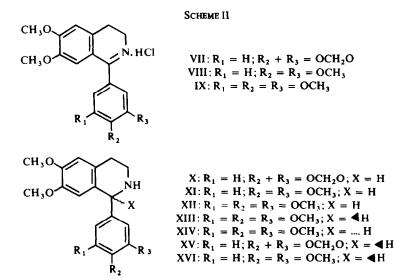



FIG 2. ORD curves of compound (III) ----, (VI) ----, (IV) ---- and CD curves of compound (III) -----, (VI) -----, (IV) ----- (in MeOH).

First, racemic isoquinolines (X-XIII) were synthesised as follows. Reduction of 3.4-dihydroisoquinoline (VII-IX) hydrochloride. obtained by Leander's method.^{2.3} with sodium borohydride afforded the corresponding tetrahydro-isoquinolines (X, XI, and XII) as colourless needles having m.p. 135–136°, 75–76°, and 111–112°, respectively. Optical resolution of XII with di-p-toluoyl-(+)-tartaric acid was carried out in acetone to give (-)-XIII di-p-toluoyltartrate, $[[\alpha]_D^{18} - 67.1^{\circ} (MeOH)]$, which was transformed to the optically active isoquinoline (XIII) as a free base, $[[\alpha]_{D}^{22} - 39.9^{\circ}]$ (CHCl₃)], as shown in Fig 1. The Eschweiler-Clarke reaction of XIII gave the optically active cryptostyline III (III), m.p. 120-121° (lit, ³ m.p. 126-129°), [a]¹⁹ + 73.8° (CHCl₃) $[lit, {}^{3} [\alpha]_{D} + 51^{\circ} (CHCl_{3})]$. On the other hand, the optical isomer (VI) was obtained by the same manner from (+)-1,2,3,4-tetrahydro-1-(3,4,5-trimethoxyphenyl)-6,7-dimethoxyisoquinoline (XIV) which was obtained by the treatment of racemic isoquinoline (XII) with di-p-toluoyl-(-)-tartaric acid. The ORD spectra of these two optically active isoquinolines (III and VI) were correlated with that of the isoquinoline (IV) taking the *R*-configuration at the C-1 position. The observed results apparently indicate that the (+)-isomer (III) belongs to the R-series as shown in Fig 2. Therefore, the absolute configuration of the natural cryptostyline III was proved to possess a β -hydrogen at the C-1 position in the structure III.

Secondly, the optical resolution of the isoquinoline (X and XI) was examined. The treatment of X and XI with di-p-toluoyl-(+)-tartaric acid afforded the corresponding tartrates, $[[\alpha]_D - 52 \cdot 1^\circ (CHCl_3)]$ and $[[\alpha]_D - 55^\circ (CHCl_3)]$,* respectively, from which, however, the optically active isoquinolines (XV and XVI) were not obtained, but inactive ones (X and XI). These facts most certainly indicated that the isoquinolines

^{*} These values indicated that the optical resolution of isoquinolines was carried out, since the $[\alpha]_D$ value of di-*p*-toluoyl-(+)-tartaric acid showed -86° (c = 1.0, MeOH) and the calculated value of the di-*p*-toluoyl-(+)-tartaric acid in the corresponding tartrate was $[\alpha]_D^{20} - 101^\circ$ (c = 0.1, MeOH) in the case of di-*p*-toluoyl-(+)-tartrate of XI. This difference should be due to the optically active (-)-isoquinolines.

(XV and XVI) would be racemised in the course of liberating the corresponding di-p-toluoyl-(+)-tartrate by alkaline treatment. Leander^{2, 3} pointed out that the natural cryptostyline I (I) was easily racemised in boiling ether as in the case that some 1-phenylisoquinoline such as XV and XVI would be readily racemised with a base or in solvent. Although only (+)- and (-)- cryptostyline III were synthesised and their absolute configurations verified, it would be very difficult to obtain the other active 1-phenylisoquinolines because of ready racemisation.

EXPERIMENTAL

M.p.s are uncorrected. NMR spectra were measured by a Hitachi R-20 spectrometer. The ORD and CD spectra were taken by a JASCO model ORD/UV-5 recorder.

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4-methylenedioxyphenyl)isoquinoline (X). To a stirred soln of VII (6 g) in MeOH (100 ml) was added in small portions NaBH₄ (0-8 g). After the stirring for 1 hr at room temp, the solvent was evaporated and the residue was diluted with H₂O and then extracted with CHCl₃. The extract was washed with H₂O. dried (Na₂SO₄), and evaporated to give X (6 g) as colourless needles (from Me₂CO), m.p. 135–136° (Found: C, 68-57; 5-79; N, 4-74. C₁₈H₁₉NO₄ requires: C, 68-99; H, 6-11; N, 4-47%); NMR (in CDCl₃): τ 8-09 (1H, s, NH), 6-70–7-30 (4H, m, C₃-H₂ and C₄-H₂), 6-17 and 6-35 (6H, each s, 2 × OCH₃), 5-09 (1H, s, C₁-H), 4-11 (2H, s, $-O-CH_2-O$), 3-76 (1H, s, C₈-H), 3-43 (1H, s, C₅-H), 3-30 (3H, s, Ar-H).

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4-dimethoxyphenyl)isoquinoline (XI). To a stirred soln of VIII (7 g) in MeOH (100 ml) was added NaBH₄ (0.9 g). The mixture was worked up as above to give XI (4-5 g) as colourless needles (from Et₂O), m.p. 75-76° (Found: C, 65-74; H, 7-44; N, 3-90. $C_{19}H_{25}NO_5.H_2O$ requires: C, 65-69; H, 7-25; N, 4-03%); this was further dried on P₂O₅ (3 mm Hg) at room temp to give the hemihydrate, m.p. 76-77° (Found: C, 67-51; H, 7-19; N, 4-45. $C_{19}H_{23}NO_4.0.5H_2O$ requires: C, 67-43; H, 7-15; N, 4-14%); NMR (in CDCl₃): τ 7-90 (1H, s, NH), 6-70-7-40 (4H. C_3 -H₂ and C_4 -H₂), 6-40 (3H, s, OCH₃), 5-09 (1H, s, C₁-H), 3-77 (1H, s, C₈-H), 3-42 (1H, s, C₅-H), 3-24 (3H, s, Ar-H).

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)isoquinoline (XII). A soln of IX (5 g) in MeOH (100 ml) was treated with NaBH₄ (1 g) and worked up as above to give XII (3·2 g) as colourless needles (from Et₂O), m.p. 111-112° (Found: C, 66-48; H, 6·80; N, 4·02. $C_{20}H_{25}NO_5$ requires: C, 66-83; H, 7·01; N, 3·90%); NMR (in CDCl₃): τ 7·78 (1H, s, NH), 6·75-7·40 (4H, m, C₃-H₂ and C₄-H₂), 6·39 (3H, s, OCH₃), 6·20 and 6·25 (12H, each s, 4 × OCH₃), 5·10 (1H, s, C₁-H), 3·74 (1H, s, C₈-H), 3·55 (2H, s, Ar-H), 3·43 (1H, s, C₅-H).

(-)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)isoquinoline (XIII) di-p-toluoyl-(+)-tartrate. To a soln of XII (1.007 g) in Me₂CO (30 ml) was added a soln of di-p-toluoyl-(+)-tartaric acid (1.158 g). This mixture was kept aside for 12 hr at room temp. The ppt (1.3 g), m.p. 147-155°, was recrystallised from MeOH several times to give colourless needles (450 mg), m.p. 183-185° (Found: C, 64-09; H, 6-16; N, 2-95. C₂₀H₂₅NO₅.0.5C₂₀H₁₈O₈.0.5H₂O* requires: C, 64-16; H, 6-29; N, 2-50%, [α]_D¹⁸ - 67-1° (c = 0.201, MeOH, 1 = 0-2 dm).

(-)-1,2,3,4-*Tetrahydro*-6,7-*dimethoxy*-1-(3,4,5-*trimethoxyphenyl*)*isoquinoline* (XIII). A suspension of the above tartrate (100 mg) in 10% Na₂CO₃aq was extracted with CHCl₃. The extract was washed with H₂O, dried (Na₂SO₄), and evaporated. Recrystallisation of the crude product from Et₂O afforded XIII (45 mg) as colourless needles, m.p. 98° (Found: C, 66-58; H, 7.06; N, 4-15. C₂₀H₂₃NO₅ requires: C, 66-83; H, 7.01; N, 3.9%), $[\alpha]_{D^2}^2$ - 39.9° (c = 0.326, CHCl₃, 1 = 0.2 dm), ORD (c 0.03), $[\Phi]_{294}$ - 5300° tr, $[\Phi]_{276}$ + 4300° pk, $[\Phi]_{263}$ + 1250° tr; CD, $[\theta]_{305}$ 0°, $[\theta]_{283}$ - 5400°, $[\theta]_{272}$ 0°.

(+)-1,2,3,4-*Tetrahydro*-6,7-*dimethoxy*-1-(3,4,5-*trimethoxyphenyl*)-2-*methylisoquinoline* (III). A mixture of XIII (100 mg), 37 % HCHO (2 ml), and MeOH (20 ml) was refluxed for 0.5 hr on a water-bath. To the above soln was added NaBH₄ (150 mg) under cooling, and then the mixture was refluxed for 0.5 hr. After removal of the solvent, the remaining residue was diluted with H₂O and extracted with CHCl₃. The extract was washed with H₂O, dried (Na₂SO₄) and evaporated to give III (70 mg) as colourless needles (from Et₂O), m.p. 120–121° (Found: C, 67·11; H, 6·99; N, 4·07. C₂₁H₂₇NO₅ requires: C, 67·54; H, 7·29; N, 3·75°₆), $\lfloor \alpha \rfloor_{16}^{16}$ + 73·8° (c = 0·454, CHCl₃, 1 = 0·2 dm) [lit, ³ [$\alpha \rfloor_{19}^{19}$ + 51° (c = 0·15, CHCl₃)]; ORD (c = 0·03), $\llbracket \Phi \rfloor_{296}$ - 1140° tr, $\llbracket \Phi \rfloor_{276}$ + 11000° pk, $\llbracket \Phi \rfloor_{264}$ + 4120° tr; CD, $\llbracket \theta \rfloor_{286}$ - 5040°, $\llbracket \theta \rfloor_{276}$ 0°.

* These salts were very hygroscopic.

(+)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)isoquinoline (XIV) di-p-Toluoyl-(-)-tartrate. To a soln of XII (420 mg) in Me₂CO (13 ml) was added a solution of di-p-toluoyl-(-)-tartaric acid (420 mg). This mixture was worked up as above to give the tartrate (190 mg) as colourless needles (from MeOH), m.p. 183-184·5° (Found: C, 64·01; H, 6·48; N, 2·35. C₂₃H₂₅NO₅.0.5.C₂₀H₁₈O₈.0.5H₂O^{*} requires: C, 64·16; H, 6·29; N, 2·50%, $[\alpha]_{D}^{18} + 60·7°$ (c = 0·206, MeOH, 1 = 0·2 dm).

(+)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)isoquinoline (XIV). A suspension of the above tartrate (115 mg) in 10% Na₂CO₃ aq was extracted with CHCl₃. The extract was washed with H₂O, dried (Na₂SO₄) and evaporated to give XIV (50 mg) as colourless needles (from Et₂O), m.p. 96–97° (Found : C. 66·45; H. 6·18; N. 4·16. C₂₀H₂₅NO₅ requires: C. 66·83; H. 7·01; N. 3·90%). $[\alpha]_{b}^{18}$ + 39·9′ (c = 0·388. CHCl₃, 1 = 0·2 dm); ORD (c = 0·025), $[\Phi]_{263}$ - 1000° pk, $[\Phi]_{251}$ - 3300° tr, $[\Phi]_{249}$ - 3000° pk; CD[Φ]₂₈₄ + 5920°, $[\theta]_{272}$ 0°, $[\theta]_{260}$ - 500°.

(-)-1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4,5-trimethoxyphenyl)-2-methylisoquinoline (VI). The above XIV (55 mg) was treated with 37% HCHO (1.5 ml) and NaBH₄ (100 mg) as in the case of XIII. The crude product was recrystallised from Et₂O to give VI (30 mg) as colourless needles, m.p. 121–122° (Found: C, 67.90; H, 6.84; N, 4.05. C₂₁H₂₇NO₅ requires: C, 67.54; H, 7.29; N, 3.75%), $[\alpha]_{10}^{10} - 82.1^{\circ}$ (c = 0.176, CHCl₃, 1 = 0.2 dm); ORD (c = 0.025), $[\Phi]_{295.5} + 600^{\circ}$ pk, $[\Phi]_{278} - 10400^{\circ}$ tr, $[\Phi]_{264} - 5400^{\circ}$ pk; CD, $[\theta]_{302} 0^{\circ}$, $[\theta]_{286} + 5000^{\circ}$, $[\theta]_{278} 0^{\circ}$, $[\theta]_{269} - 1960^{\circ}$, $[\theta]_{261} - 1340^{\circ}$.

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4-methylenedioxyphenyl)isoquinoline di-p-Toluoyl-(+)-tartrate. To a soln of X (939 mg) in Me₂CO (15 ml) was added a soln of di-p-toluoyl-(+)-tartratic acid (1·158 g) in Me₂CO. The mixture was kept aside at room temp and the ppt was recrystallised from MeOH several times to give colourless prisms (900 mg). m.p. 185–187°. (Found: C. 65·14; H. 5·98; N. 2·71. C₁₈H₁₉NO₄·0·5C₂₀H₁₈O₈·0·5H₂O⁶ requires: C. 65·23; H. 5·67; N. 2·71%). $[\alpha]_{D}^{17}$ -52·1° (c = 0·240. MeOH. 1 = 0·2).

1,2,3,4-Tetrahydro-6,7-dimethoxy-1-(3,4-dimethoxyphenyl)isoquinoline di-p-Toluoyl-(+)-tartrate. The isoquinoline XI (658 mg) was treated with di-p-toluoyl-(+)-tartaric acid (772 mg) in Me₂CO as above to give the tartrate (800 mg) as colourless needles, m.p. 187–189° (from MeOH) (Found: C, 65·45; H, 5·78; N, 2·95. $C_{19}H_{23}NO_4.0.5C_{20}H_{18}O_8.0.5H_2O^*$ requires: C, 65·59; H, 6·26; N, 2·64°₀), $[\alpha]_D^{19} - 55^\circ$ (c = 0·201, MeOH, 1 = 0·2 dm).

Acknowledgement—We thank Mr. Ohuchi, Miss Kawakami, Miss C. Yoshida, Miss T. Yoshida, Miss R. Kato, and Miss R. Suzuki for microanalysis and spectral measurements.

REFERENCES

- ¹ Part CCCXCVI, J. Org. Chem. in press.
- ² K. Leander, B. Lüning, Tetrahedron Letters 1393 (1968)
- ³ K. Leander, B. Lüning, and E. Ruusa, Acta. Chem. Scand. 23, 244 (1969)
- ⁴ T. Kametani, H. Sugi, H. Yagi, K. Fukumoto, and S. Shibuya, J. Chem. Soc. (C) 2213 (1970)